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Keynote Speakers 
Professor Andreas Bender 
 

 
Andreas Bender is a Professor of Molecular Informa4cs at the Yusuf 
Hamied Department of Chemistry, University of Cambridge. He is 
commiCed to developing new life science data analysis methods 
(AI/ML/data science) and their applica4on, primarily related to 
chemical biology, drug discovery and in silico toxicology. Andreas also 
holds posi4ons as the Chief Technology & Informa4cs Officer of 
PangeAI, and as co-founder of both Healx Ltd and PharmEnable Ltd. 

 
 
Professor Fernanda Duarte Gonzales 
 
 

Fernanda Duarte Gonzales is an associate Professor of Computa4onal 
Organic Chemistry at the University of Oxford. Her group’s research 
focuses on developing computa4onal methodologies that help to 
elucidate complex (bio)chemical mechanisms and guide the design of 
novel catalysts and synthe4c approaches. The group strives to break 
down some of the tradi4onal barriers within chemistry, combining 
exper4se in physical organic, supramolecular, and computa4onal 
chemistry. Current research interests span reac4on mechanism 
elucida4on and automa4on, machine Learning and chemical reac4vity, 
supramolecular design for catalysis and sensing, and enzyme catalysis. 

 
 

Invited Speakers 
 
Dr Adam Clayton 
 
Adam Clayton is a University Academic Fellow at the University of Leeds, where he is working 
on the autonomous development of mul4step con4nuous flow syntheses and telescoped 
cataly4c reac4ons. His research inte rests focus on designing and applying new digital 
technologies to accelerate the development of more sustainable chemical processes, with 
par4cular interest in mul4step con4nuous flow synthesis and telescoped cataly4c reac4ons. 
 
Dr Michele Assante 
 
Michele Assante is a postdoctoral researcher for AstraZeneca based at the University of 
Cambridge in the Innova4on Centre in Digital Molecular Technologies (iDMT). Here, he is 
working on the digitalisa4on of chemistry and on the merger of first principle calcula4ons with 
AI. He has developed ESPlace; a python package for the treatment of solvent effects. 
  



 

                                                                

 
Using Chemical and Biological Data for Drug Discovery – Methods, 

ApplicaAons, and PiCalls 
Andreas Bender* 

 
*Yusuf Hamied Department of Chemistry, University of Cambridge, UBB Cluj, UMF Cluj, and 
Pangea Bio 
andreas@bio.bi  
 
The amount of chemical and biological data available has increased in the public as well as the 
private domain, and both on the algorithmic and hardware side progress has been tremendous 
in machine learning. Press releases describe the design of funcGonal proteins and anGbodies 
from scratch, and several ‘first AI-designed drugs’ have already entered clinical phases. 
 
However, all is not well when it comes to the marriage of algorithms with drug discovery, in 
parGcular when it comes to the in vivo relevance of what we are able to do with chemical and 
biological data at this point in Gme. Reasons for this are that the field is sGll stuck in reducGonist 
thinking, in combinaGon with a lack of relevant data and our ability to handle it computaGonally 
to support decision making. 
 
This contribuGon will review the current status of the field, as well as provide case studies 
where data and computaGonal methods have been able to select compounds with the desired 
effects on a biological system in various therapeuGc areas, and explain what currently sGll 
hampers further progress. 
 
Further Reading (for easy access go to: hSp://www.drugdiscovery.net/AIReview)  

Bender A, Cortés-Ciriano I. ArGficial intelligence in drug discovery: what is realisGc, what are 
illusions? Part 1: Ways to make an impact, and why we are not there yet. Drug Discov Today. 
2021 Feb;26(2):511-524. doi: 10.1016/j.drudis.2020.12.009. (open access) 

Bender A, Cortes-Ciriano I. ArGficial intelligence in drug discovery: what is realisGc, what are 
illusions? Part 2: a discussion of chemical and biological data. Drug Discov Today. 2021 
Apr;26(4):1040-1052. doi: 10.1016/j.drudis.2020.11.037. (open access) 
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Enhancing Drug Discovery with Contrastive-Finetuned 
Sentence-Transformers  

Jiayun Pang*1, Ivan Vulic2   
 

* Corresponding author   
1 School of Science, Faculty of Engineering and Science, University of Greenwich, Medway 
Campus, Central Avenue, Chatham Maritime, ME4 3RL, UK. E-mail: j.pang@gre.ac.uk.  
2 Language Technology Lab, University of Cambridge, 9 West Road, Cambridge CB3 9DA, UK. 
iv250@cam.ac.uk  
  
Keywords: contrastive learning, sentence-BERT, molecular embedding, few-shot learning, 
drug discovery.  
  
Abstract:   
In recent years, Transformer-based deep learning techniques have revolutionised the field of 
Natural Language Processing (NLP). These methods are increasingly being applied to chemical 
sciences where the sequence representation of molecular structure (such as SMILES and 
SELFIES) exhibits similarities with language sequence, therefore making it possible to adopt 
NLP algorithms to analyse molecules in a manner similar to how text is analysed. This approach 
can be used for a wide range of tasks, including molecular property prediction and data-driven 
molecular structure generation.  A central task in computer-assisted drug discovery involves 
constructing models based on known bioactive molecules to identify other promising 
molecules for further activity screening. This process typically relies on tens of active 
molecules. When dealing with a limited dataset of bioactive molecule, the standard “pre-
training and finetuning” approach in deep learning often proves no more effective than 
supervised machine learning models based on molecular fingerprint and physicochemical 
features.  To address the challenges posed by the scarcity of bioactive molecules, our research 
explores a contrastive finetuning technique in conjunction with the Sentence-BERT 
(Bidirectional Encoder Representations from Transformers) framework.[1] Contrastive 
learning is a machine learning paradigm where data points are juxtaposed against each other 
to teach a model which points are similar (positive pairs), and which are dissimilar (negative 
pairs). Our approach consists of four stages:  

1. Pretraining a BERT model using 10 million SMILES and deriving molecular representation 
with NLP-inspired embedding using Sentence-BERT.  

2. General contrastive-finetuning using a framework called Simple Contrastive Learning of 
Sentence Embeddings (SimCSE) [2] and an unlabelled dataset of 10,0000 molecules. 

3.  Further contrastive finetuning using active and inactive molecules related to the bio-
target in the training dataset.   

4. Classification of molecules in the test dataset to predict whether they are active or not 
using the model finetuned in Stage 3.   
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Our results indicate that our contrastive-finetuned model significantly outperforms a 
molecular fingerprint-based classification model when trained with small sets of 16 or 32 active 
molecules. This highlights its potential for few-shot learning in drug discovery.[3] Additionally, 
while our approach achieves accuracy comparable to finetuning BERT, it yields 10-15% fewer 
false positives when screening a large dataset of 70,000 molecules and is significantly faster 
due to the computational efficiency of the underlying Sentence-BERT framework. We are 
working towards harnessing the power of molecular embedding and Transformer-base 
chemistry models for effective search and ranking of molecules for drug discovery.  
 
References  
  

1. Reimers N, Gurevych I. Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks. 2019, arXiv:1908.10084.  
2. Gao T, Yao X, and Chen D. SimCSE: Simple Contrastive Learning of Sentence 
Embeddings. 2022, arXiv:2104.08821v4.  
3. Schimunek J, Seidl P, Friedrich L, Kuhn D, Rippmann F, Hochreiter S, Klambauer G. 
Context-Enriched Molecular Representation Improve Few-Shot Drug Discovery. 2023, 
arXiv:2305.09481v1  

  



 

                                                                

 
DoE-SINDy: an automated framework for model generation 

and selection in kinetic studies  
Wenyao Lyu1, Federico Galvanin*2   

 
1 Department of Chemical Engineering, University College London (UCL), Torrington Place, 
WC1E 7JE London, United Kingdom  
  
Keywords: nonlinear dynamic system identification, model structure generation, kinetic 
studies, model selection, design of experiment  
  
Abstract: 
Digital twins have revolutionised the manufacturing sector by leveraging robust and reliable 
kinetic models to accurately predict the behaviour of bio(chemical) reaction systems and 
explore a wide range of operating conditions. However, identifying these models is challenging, 
because the set of differentials and algebraic equations representing the reaction system 
typically involves many state variables and kinetic parameters [1]. Furthermore, the limited 
observations and inevitable experimental errors when collecting information from the system 
further complicate the precise identification of complex mechanisms.   
To ensure the reliability and precision of the parameters, confirming a correct model structure 
is prior to the sequential steps of parameter estimation and model validation. Conventional 
model building approaches require model selection and model modification [2] and 
necessitate prior knowledge of candidate model structures. Conversely, model generation 
methods, such as sparse identification of nonlinear dynamics (SINDy) [3] only require defining 
a library of candidate function terms instead of the full mathematical expression of candidate 
models. Therefore, we employ SINDy to address situations where there is insufficient 
theoretical understanding of the system or where the ‘true’ (i.e., most suitable) model is not 
among the candidate models.  
 
To model complex systems using the minimal training data, we proposed DoE-SINDy (Figure 
1), a modular framework comprising seven key modules: 1) design of experiments (DoE); 2) 
data collection; 3) model generation; 4) model ranking and preliminary selection; 5) model 
calibration and reduction; 6) model evaluation and secondary selection; 7) model-based design 
of experiments (MBDoE) for model discrimination and parameter precision. To enhance 
robustness against noise and mitigate structural variations across different datasets, DoE-
SINDy employs a strategy of generating multiple models from diverse subsets of experiments. 
Integrated with identifiability checks, parameter calibration, and rigorous evaluation and 
selection steps, DoE-SINDy improves the reliability of the selected final model.   
 
This framework is tested on a simulated case study: a three-component batch reaction system 
described by power-law rate expressions [1]. The case study simulates the real-world process 
of kinetic model identification, demonstrating iterative model refinement with increasing 
dataset size until achieving the required adequacy or meeting the constraints of the 
experimental budget. The proposed DoE-SINDy is compared against state-of-the-art model 
identification approaches, evaluating factors such as required experimental budget, model 



 

                                                                

identification performance and computational complexity, underlining key strengths and 
limitations.   

  
Figure 1. Framework of DoE-SINDy  

References  
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Bayesian Self-Optimisation for Multistep Flow Processes and 
Mixed Variable Reactions  

Naser Aldulaijan1, Joe A. Marsden1, Jamie A. Manson1, Edward O. Pyzer-Knapp2, Mark 
Purdie3, Martin F. Jones3, Alexandre Barthelme4, John Pavey4, Nikil Kapur1, A. John 

Blacker1, Thomas W. Chamberlain1, Richard A. Bourne1, Adam D. Clayton*1   
  

1 Institute of Process Research and Development, University of Leeds, UK.  
2 IBM Research, Daresbury Laboratory, UK.  
3 AstraZeneca, Pharmaceutical Technology and Development, Macclesfield, UK.  
4 UCB Pharma SA, Brussels, Belgium.  
  
Keywords: Automation, Bayesian Optimisation, Catalysis, Flow Chemistry, Machine Learning.  
  
Abstract:   
Self-optimisation platforms, which combine reactors, process analytics and machine learning 
algorithms in a feedback loop, have been shown to accelerate the optimisation of continuous 
parameters for single step reactions. As the synthesis of most products requires multiple steps, 
and includes mixtures of continuous and categorical variables, it would be desirable to 
translate the benefits of self-optimisation platforms to these more complex processes. 
However, the task of optimising these remains highly challenging, as combining reactions 
introduces complex interactions between the steps which must be considered holistically. 
Furthermore, the introduction of categorical variables within the design space can quickly 
increase the dimensionality of the problem, leading to significantly slower convergence.  
In this work, we developed an automated continuous flow platform with a simple method for 
multipoint sampling, enabling accurate quantification of each reaction in a multistep process, 
and an in-depth understanding of the reaction pathways.[1] A new Adaptive Latent Bayesian 
Optimiser (AlaBO) algorithm was also designed to accelerate the development of mixed 
variable catalytic reactions.[2]     
 
 

  

  

  
Figure 1. Multistep self-optimisation platform and mixed variable Bayesian optimisation 

approach.  
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Beyond observaAon in microbial live-cell imaging: ExerAng control 
on microbial populaAons using real-Ame AI image analysis and 

response triggering 
Johannes Seiffarth1,2, MaShias Pesch1, Lukas Scholtes3, Hanno Scharr3, Dietrich 

Kohlheyer1, Katharina Nöh*1 
 
1 InsGtute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 
Jülich, Germany. 
2 ComputaGonal Systems Biology (AVT-CSB), RWTH Aachen University, Aachen, Germany. 
3 InsGtute for Advanced SimulaGon, IAS-8, Forschungszentrum Jülich GmbH, Jülich, Germany 
 
Keywords: microbial control, AI image processing, live-cell imaging, real-Gme control, 
microfluidics. 
 
Abstract: 
 
Microfluidic live-cell imaging (MLCI) is an emerging technology that provides invaluable 
insights into the temporal development of living cells to study their behavior at the single-cell 
level [1,2,3]. UGlizing modern microfluidic devices and advanced automated microscopy, 
thousands of independent cell populaGons are monitored in picoliter sized bioreactors in a 
single experiment [4], turning MLCI into a high-throughput technology for efficient screening 
of biotechnological process parameters [5]. However, for the last decade, MLCI has been 
limited by the extensive image processing required for extracGng quanGtaGve insights from 
microscopy Gme-lapses. The emergence of increasingly powerful AI-driven image analysis tools 
for cell segmentaGon [6] and their conGnuous improvement using new datasets [7] makes 
automated image processing and data analysis available. Moreover, the fast inference speeds 
of trained deep neural networks unlocks image processing in real-Gme providing informaGon 
during the experiment and raising opportuniGes to react to and even control cell behaviour 
[8]. In this talk, we present our new event-driven pla}orm for ultrahigh throughput MLCI 
experimentaGon and fine-grained control based on real-Gme informaGon. We combine real-
Gme AI-driven image processing with so~ware-defined experimentaGon and high-throughput 
microfluidic chips. We first show that this combinaGon accelerates MLCI experiments, 
facilitates ultrahigh-throughput and large-scale data acquisiGon, and standardizes 
experimental procedures through so~ware automaGon. We demonstrate the capabiliGes of 
our pla}orm with the example of real-Gme growth control. During the running experiment 
triggered light pulses control the growth of photosensiGve microbial strains [9]. UGlizing the 
ultrahigh-throughput capabiliGes, we demonstrate that individual control parameters can be 
applied per mini bioreactor to screen a wide range of control parameters in a single 
experiment. With our pla}orm, we illustrate that the seamless integraGon of exisGng live-cell 
imaging hardware and nouveau real-Gme AI-driven data processing into a closed feedback loop 
presents a paradigm shi~ in MLCI experimentaGon and leads to a new era of live-cell analysis 
with unprecedented real-Gme control over living organisms. 
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twa: A dynamic knowledge graph Python package for interoperable 
chemistry 

Jiaru Bai,1 Simon D. Rihm,1 Aleksandar Kondinski,1,2 George Brownbridge,3 
SebasGan Mosbach,1,2 Jethro Akroyd,1,2 Markus Kra~1,2,4,5* 

  
* Corresponding author: mk306@cam.ac.uk (M.K.)  
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Keywords: dynamic knowledge graph, laboratory automaGon, interoperability, the world 
avatar, so~ware agents  
  
Abstract: 
The rapid advancement of digitalisaGon, automaGon, and high-throughput experimentaGon 
has revoluGonised data generaGon in chemistry, but this progress has not been matched by 
standardised pracGces in data reporGng and experiment workflow documentaGon. This leads 
to poor interoperability and reproducibility among experiments conducted by different 
researchers. Moreover, the necessity of laborious data mining from literature obstructs the 
efficiency of data-driven discoveries. Addressing these challenges, we propose leveraging 
knowledge graph technology. Introducing "The World Avatar," a dynamic knowledge graph 
designed to comprehensively represent physical and abstract enGGes, computaGonal agents, 
and so~ware, we offer a scalable semanGc soluGon. While The World Avatar has historically 
developed Java libraries, democraGsing access to such technology necessitates an open-
source, user-friendly soluGon to non-experts. The Python package “twa” expands upon the 
World Avatar's capabiliGes in Java with Python-naGve features. Through illustraGve case 
studies, we showcase twa's efficacy in facilitaGng interoperable and reproducible research in 
chemical science.  
  



 

                                                                

PC-Gym: Reinforcement Learning Environments for 
Process Control 

Maximilian Bloor1 , Max Mowbray1 , Jose Torraca1, Ilya Orson Sandoval1, Akhil Ahmed1, 
Mehmet Mercangöz1, Calvin Tsay1, Ehecatl Antonio Del Rio Chanona1* 

 
* Corresponding author 
1Sargent Centre for Process Systems Engineering, Imperial College London, UK. 
 
Keywords: Reinforcement Learning, Process Control, Machine Learning Benchmarks 
 
Abstract: 
While reinforcement learning (RL) shows potenGal for learning control policies for complex 
industrial processes, further research and industry understanding has been limited due to the 
lack of standardized benchmarks and easy-to-use environments. To help overcome these 
barriers, we present pc-gym [1] - an open-source Python package providing simulaGon 
environments specifically designed for developing, evaluaGng, and benchmarking RL control 
agents for process systems. The pc-gym package is intended to serve both an educaGonal 
purpose by introducing process control concepts and RL algorithms to students and industrial 
pracGGoners, as well as provide a standardized research pla}orm for academics focused on  
data-driven process control algorithms such as reinforcement learning. A key focus is making 
the development and evaluaGon of RL algorithms more accessible by miGgaGng the 
complexiGes of process modeling and control implementaGon. The package builds on the 
OpenAI Gymnasium interface [2], implemenGng dynamic models of common process units like 
reactors, disGllaGon columns, and heat exchangers. The modular design simplifies creaGng new 
custom environments to facilitate diverse process control studies. All environments adhere to 
the standard Gymnasium API for seamless integraGon with pre- exisGng RL libraries or discrete-
Gme control algorithms. 

 
Figure 1. Example comparison between SAC and PPO RL policies, and the oracle in the CSTR 
environment using the pc-gym python package. 



 

                                                                

 
Pc-gym enables the creaGon of realisGc discrete-Gme process control problems by allowing 
specificaGon of state and control constraints, introducGon of process disturbances, and 
structuring of observaGons to match industrial scenarios. The library also provides uGliGes for 
benchmarking RL policies by visualizing dynamic responses, reward distribuGons and 
comparing to opGmal control with the use of model predicGve control with a perfect model 
(oracle in Figure 1). With its educaGonal value, standardized control benchmarks, and 
evaluaGon capabiliGes, pc-gym offers a unified pla}orm to accelerate industrial adopGon and 
academic progress in data-driven control techniques for process control. 
References 
1. Bloor M, Torraca J, Sandoval I, Mowbray M, Ahmed A, Mercangoz M, et al. pc-gym: 
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Available from: hSps://github.com/MaximilianB2/pc-gym 
2. Brockman G, Cheung V, PeSersson L, Schneider J, Schulman J, Tang J, et al. OpenAI 
Gym. arXiv:160101540. 2016; Available from: hSp://arxiv.org/abs/1606.01540 
 
 
 
 
 
 
  



 

                                                                

Bayesian ClassificaAon with AcAve Learning for Closed-loop 
IdenAficaAon of Feasible OperaAng Region in ConAnuous Flow 

CrystallizaAon 
Arun Pankajakshan1, Ishaa Mane1, Sayan Pal1 , Maximilian O. Besenhard1, Asterios Gavriilidis1, 

Luca Mazzei1 , Federico Galvanin*1 
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crystallizaGon. 
 
Abstract 
Constrained process design is a challenging problem, parGcularly when the constraints that 
define the feasible operaGng region in the design space are unknown (1). Without properly 
idenGfying this region, opGmal process design soluGons can become infeasible. 
In conGnuous flow crystallizaGon, the feasible operaGng region can be defined as the design 
space region where fouling does not occur due to crystal growth and agglomeraGon, and 
where, ideally, the formaGon of stable crystals within the crystallizer is guaranteed. 
Unfortunately, this feasible region is unknown a-priori, parGcularly in the first phases of drug 
development, where resource-intensive experimental trials are carried out at different process 
condiGons and employing different stabilizers. In this work, we propose a systemaGc data-
driven methodology to idenGfy the feasible operaGng space for the anGsolvent crystallizaGon 
of API drugs in closed-loop using design of experiments (DoE) and machine learning (ML) 
methods. Specifically, we employ Bayesian classificaGon (2) combined with acGve learning (AL) 
(3) as ML methods to respecGvely idenGfy and iteraGvely refine the boundaries of the feasible 
operaGng region. In Bayesian classificaGon, a Gaussian process (GP) classifier model is adopted 
as the latent funcGon. During the inference, the predicGons of the posterior GP models (one 
for each class) are converted into relaGve class probabiliGes through a so~max (4) 
transformaGon. Then, based on a maximum likelihood principle, the class labels are obtained 
by means of Monte Carlo sampling from the categorical distribuGon of the relaGve class 
probabiliGes (5). In convenGonal AL approaches, the classifier models are iteraGvely updated 
in order to learn the true boundary separaGng the classes, for which the predicGon of relaGve 
class probabiliGes is used to define uncertainty-based objecGve funcGons (such as classificaGon 
margin, classificaGon uncertainty and classificaGon entropy) (6) to design a sequence of 
informaGve experiments. In this work, we propose a novel AL method in which the uncertainty 
around the predicGons of latent funcGon values (predicGons of GPs) is propagated to the 
uncertainty around the predicGons of relaGve class probabiliGes and the point with the highest 
value of propagated uncertainty is chosen as the next design point. An advantage of this 
approach is that it does not concentrate samples around the predicted boundary but explores 
the region of highly uncertain condiGons regardless of its distance from the predicted 
boundary. This leads to a rapid convergence to the search of the true boundary separaGng the 
classes. The effecGveness of the proposed method is demonstrated in a real case study of 
closed-loop autonomous idenGficaGon of the feasible operaGng region for anGsolvent 
crystallizaGon of ketoprofen drug crystals in a conGnuous flow crystallizer. 
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AI-driven site selecAvity in halogenaAon chemistry 
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Abstract: 
 
Chemical selecGvity predicGon is a major challenge. ReacGons can happen on various sites; 
predicGng them typically requires Gme and effort from highly trained chemists. The best 
strategy to obtain a desired outcome is performing mulGple experiments and analysing the 
results individually to determine the condiGons which lead to the required regioselecGvity. 
Nonetheless, the wealth of data available in chemical reacGon databases should be able to 
help us accelerate this process. We have developed a workflow for aromaGc halogenaGon, an 
important reacGon class where theoreGcal background is available. Our pipeline achieves 
79.7% accuracy on cross-validaGon and 79.6% on the test set. We leveraged datasets on 
different halogenaGons – fluorinaGon, chlorinaGon, brominaGon, and iodinaGon – as well as 
their combinaGon as a superset of over 17,000 reacGons to enhance quanGty and structural 
diversity of the datasets. The new workflow does not rely on computaGonally expensive 
methods, nor intensive prior knowledge of the transformaGon and could be quickly 
reproduced for new transformaGons where data is available – from literature databases or 
high-throughput campaigns – to accelerate reacGon predicGon in complex targets and late 
stage funcGonalisaGon. Our focus on rapid, low-cost models makes possible hosGng on a web 
browser for an accessible user-experience, enabling its use by scienGsts with no-coding 
experience. 
 
Currently, we are comparing the workflow with a range of benchmark models available in the 
literature. They include ab iniIo methods1, graph-based methods2, and hybrid approaches.3 
Furthermore, a dataset on human performance is being collected. Currently, AI modelling 
outperforms human selecGon by 29%. 
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Abstract:   
  
Ab-initio calculations, such as Quantum-Mechanics and Density Functional Theory, can offer 
great insight into chemical systems and can be used to explain and predict reactivity of 
chemical compounds. However, these methods require significant amount of time and 
expertise to be set-up, performed and post-processed. A recent promising application of ab-
initio calculations sees them in combination with machine-learning models to tackle current 
challenges such as reaction prediction and optimisation when scarce data is available. [1] 
However, for an efficient integration with data-driven method, a faster and more reliable way 
to perform ab-initio calculations is needed. Here, a computational workflow is presented that 
is able to automate ab-initio calculations, from the SMILES strings of reaction component to 
the final kinetic and thermodynamic data for the reaction. The workflow is used to describe at 
DFT level the Nickel dark cycle of a metallaphotoredox sp2-sp3 cross coupling reaction. This 
approach significantly reduces the time and human intervention required for setting-up and 
performing such calculations for a small library of reactions (circa 50) and produces 
computational data ready to be fed to machine learning models.  
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Abstract 
Modern drug design uses machine learning to identify possible compounds from databases of 
millions of candidate molecules. Typically, the property of interest is the EC50 – the 
concentration at which a molecule has a 50% effectiveness. EC50s are calculated by fitting 
curves to experimental data. How well the data fits the curve gives an indication of the 
reliability of the calculated EC50 value. In drug design this source of uncertainty is usually 
ignored during model fitting because it can be difficult to both identify and incorporate into 
the model.  We describe how to estimate an uncertainty value for each EC50 value and, by 
adapting a random forest to make use of these noise estimates, we are able to significantly 
improve the predictive performance of the model. This approach allows for a more efficient 
use of data in drug design reducing the total number of experiments that must be performed, 
saving on the time and cost required to design new drugs. Our work demonstrates the 
importance of having high quality data and properly preparing this data to achieve the best 
outcomes from machine learning.  
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Heterocycles are important scaffolds in medicinal chemistry that can be used to modulate 
binding and pharmacokinetic properties of drugs. Despite their importance, existing datasets 
on heterocyclic compounds often lack information on how to actually make them, making it 
challenging to access novel heterocycles. While retrosynthetic prediction models have 
emerged as promising approaches to assist synthetic chemists, their performance is poor for 
heterocycle formation reactions due to low data availability.  
 
In this talk, I discuss our efforts to overcome the low data availability problem and improve the 
performance of retrosynthesis prediction models for ring-breaking disconnections. We explore 
four different methods to improve these models by leveraging transfer learning techniques, 
reaching more > 60% are both chemically valid and involve breaking a ring. We illustrate the 
applicability of this model by successfully recreating the synthesis routes of drug-like 
compounds recently published.  
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Abstract (<400 words):  
HydrogenaGon reacGons represent an important class of transformaGon that is criGcal to the 
producGon of pharmaceuGcals, agrochemicals, advanced materials and fine chemicals. They 
are increasingly performed using conGnuous flow technologies to improve their safety, 
efficiency and scalability. CatalyGc staGc mixers (CSMs) are a recent invenGon that promises to 
significantly improve the pracGcality and efficiency of performing heterogeneously catalyzed 
hydrogenaGons in flow[1]. CSMs immobilize catalyst onto 3D printed staGc mixer scaffolds 
(Figure 1) to achieve opGmal catalyst exposure, mixing and heat transfer whilst minimizing 
pressure gradients. 

The prevalence of hydrogenaGons in chemical synthesis mean that there is a constant demand 
to opGmize them for deployment into the industrial se�ngs. Machine learning strategies such 
as Bayesian opGmizaGon have already seen success when integrated into the reacGon 
opGmizaGon process[2-5], however these approaches generally focus on small scale reacGons 
with a high degree of experimental certainty. 

This talk will discuss the development a self-opGmizing system for efficiently opGmizing 
reacGons on scalable CSM systems using Bayesian opGmizaGon strategies. The algorithm 
implements bounded length-scales and homoscedasGc noise modeling during hyperparameter 
opGmizaGon and a modified version of the expected improvement acquisiGon funcGon to 
improve the resilience of the opGmizer to noise whilst minimizing Gme to opGma. The modified 
variant of expected improvement considers experimental spacing when determining value to 
ensure an adequate distribuGon of points for reliable fi�ng of models to noisy data whilst sGll 
ensuring opGmal exploitaGon. The performance of the system was demonstrated on a range of 
transfer hydrogenaGons over palladium coated CSMs using online 1H NMR to determine 
reacGon performance in real Gme (Figure 1). 

  
Figure 1: (Left) - A 3D printed CSM. (Right) - System for the automated optimization of 
reactions over CSMs using online 1H NMR to determine reaction performance. 
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Abstract:   
Artificial neural networks (ANNs) are deep learning algorithms increasingly applied in different 
chemical engineering areas [1]. Recent work employed ANNs in a simulated reaction case study 
to successfully classify and rapidly recognise reaction kinetics models [2] and optimise the 
design of experiments (DoEs) to improve the ANN performance by using a differential 
evolution algorithm (DEA) [3]. In this work, we apply this ANN-DEA classification framework to 
the analysis of a cascade of continuously stirred tank reactor (CSTR) and plug flow reactor (PFR) 
(equivalent to infinite CSTRs-in-series [4]), considering as a case study the pharmaceutically 
relevant nucleophilic aromatic substitution comprising series and parallel reaction steps [5].  
Following the hybrid modelling ANN-DEA framework, candidate reactor models are first 
simulated to generate large sets of in-silico data by sampling the uncertain kinetic parameters 
space specified a priori at fixed DoEs defined by reactants’ inlet concentrations, reactor 
temperature and fluid residence time. Thereafter, the generated labelled data, split in the ratio 
60:20:20, is used for ANN training, validation and testing using the classification accuracy 
metric for monitoring the network performance. DEA searches the experimental design space 
via Latin hypercube sampling of a population of DoEs to produce a new generation, ranking 
the resulting experiments based on ANN classification performance and removing poorly 
performing designs before selecting the optimal one.  The in-silico data are generated by 
adding to each candidate reactor model predictions a normally distributed Gaussian noise with 
zero mean and known constant relative variance to mimic the errors in concentration 
measurements affecting the physical experimentation.   
 
Results show that an ANN accuracy of 100% (i.e. perfect classification) can be achieved for a 
quinary classification involving CSTR, 2, 5, 10 CSTRs-in-series and PFR in absence of 
measurements noise. With a measurement noise of 0.1%, however, Fig. 1 shows that the ANN 
overall performance accuracy decreases to 71% even using an optimal DoE designed by DEA. 
While there is no confusion with CSTR, some data from PFR, 2, 5 and 10 CSTRs-in-series were 
misclassified. As illustrated in Figure 2, the reactant’s concentration (of 2,4-
difluoronitrobenzene) in nucleophilic aromatic substitution decreases with the number of 
CSTRs-in-series, reaching a minimum in a PFR and a maximum in a single CSTR (Fig. 2). 
Therefore, adjacent reactor model classes can be confused when their predictions are 
corrupted by measurement noise. Future work will validate the developed ANN-DEA method 
using real experimental data generated by an autonomous reaction platform [6].  



 

                                                                

  
Fig. 1: Confusion matrix for quinary classification of CSTR (1), 2 CSTRs (2), 5 CSTRs (3), 10 CSTRs 
(4) and PFR (5) at 0.1% noise  

 
 
Fig. 2: Reactor model predictions for reactant (2,4-difluoronitrobenzene) outlet concentration 
in nucleophilic aromatic substitution.    
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Abstract:  
Liquid formulations are ubiquitous yet have lengthy product development cycles owing to the 
complex physical interactions between ingredients, making it challenging to tune formulations 
to customer-defined property targets. We seek methods to accelerate liquid formulation 
design to address changing customer preferences, supply chain/regulatory pressures, and a 
drive to develop more sustainable products. This work focuses on using lab automation to 
develop a high-throughput liquid formulations workflow and machine learning (ML) to build 
property prediction models for a system of shampoo formulations. The methods developed 
here are generalisable to other surfactant-based products in the personal care industry.  
  
ML and optimisation have expedited a broad range of product and process development but 
are critically dependent on the volume and quality of data available. We focused on developing 
a high-throughput formulation workflow comprised of modular unit operations. Formulation 
development involves working with viscous materials and often challenging and labourious 
processing or characterisation steps, e.g., pH adjustment or rheology measurement. Within 
this work, we present (i) an automated viscous liquid handling protocol using a retrofitted 
Opentrons OT-2 robot, (ii) a self-driven pHbot for automated titration of viscous liquid 
formulations, (iii) computer vision for stability prediction, and (iv) a proxy viscometer for 
Newtonian fluids. We used the developed workflow to collect a dataset of over 800 liquid 
formulations with phase stability, turbidity, and viscosity measurements.  
  
We prepared formulations with a binary mixture of surfactants, a conditioning polymer, and a 
thickener, selecting from eighteen industrial ingredients. Formulation design typically results 
in a high-dimensional, mixed discrete-continuous design problem for which there was no 
suitable design of experiments (DoE). We developed a weighted space-filling design using 
Maximum Projection Designs with Quantitative and Qualitative Factors (MaxProQQ). The 
weighting was from a phase stability classifier trained within an active learning cycle for 
difficult-to-formulate (unstable) formulation sub-systems to guide them to regions of stability.  
  
 
 



 

                                                                

Finally, we used the generated dataset to develop phase stability, turbidity, and viscosity 
models. Previous work developed these models based only on the concentration of 
ingredients, which would not extrapolate to new ingredients. Therefore, we introduced a 
featurisation based on the surfactant functional groups as an initial step towards 
generalisation. We additionally explored a set of surfactant molecular descriptors selected 
based on our domain knowledge to improve the quality of the viscosity model. However, we 
concluded that system-level descriptors are required instead.  
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