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6 July 2023 

10:00 – 11:00 Registration, welcome and refreshments 
 
11:00 – 12:00 Keynote – Michael Brenner 
   Scientific uses of automatic differentiation 

 
12:00 – 12:25 Zsuzsanna Koczor-Benda 
    High-throughput property-driven generative design of functional organic molecules 

    

12:25 – 12:50 Kobi Felton 
   ML-SAFT: A framework for PCP-SAFT parameter prediction  

 
12:50 – 14:00 Lunch 
 
14:00 – 14:35 Pietro Liò 
   Generative and Graph models in chemistry and medicine 
 

14:35 – 15:00 Ryan Greenhalgh 
Current methods for drug property prediction in the real world 
 

15:00 – 15:25 Egon Heuson 
Enzyme activity prediction using neural networks, docking and high-throughput 
screening results 

 
15:25 – 15:35  Break 
 
15:35 – 16:10 Timur Madzhidov 
   State-of-the-art on reaction prediction condition 

 
16:10 – 16:35 Benoît Baillif 

Applying atomistic neural networks to bias conformer ensembles towards bioactive-like 
conformations  

 
16:35 – 17:00 Tom Savage 

Multi-Fidelity Data-Driven Design and Analysis of Reactor and Tube Simulations 
(DARTS)  

 
17:00 – 19:00 Networking and dinner 
 
19:00   End of day 1 
 
 



7 July 2023 

09:00 – 09:15 Coffee reception 
 
09:15 – 10:00 Workshop part 1 
   Rapid predictive modelling without having to write code 

 
10:00 – 10:15 Break 
 
10:15 – 11:00 Workshop part 2 

Rapid predictive modelling without having to write code 
 
11:00 – 12:00 Poster Session 
 
12:00 – 12:35 Antonio Del Rio Chanona 
   Building Models with Machine Learning    
 

12:35 – 13:00 Jiaru Bai 
   From Platform to Knowledge Graph: Distributed Self-Driving Laboratories  
 

13:00 – 14:00 Lunch 
 
14:00 – 14:35  Stefan Born 

Machine Learning as an integral part of an automated experimental workflow in 
protein engineering  

 
14:35 – 15:00 Nishanthi Gangadharan 

Data-driven Dynamic Control Scheme for Antibody Producing CHO Cell Cultures in Fed 
Batch 

 
15:00 – 15:20 Break 
 
15:20 – 15:45 Emma Smith King 
   Practical Machine Learning for Synthetic Chemistry 

 
15:45 – 16:10 Miruta Cretu 
   Standardizing chemical compounds using language models  

 
16:10 – 16:45 Closing remarks 
 
16:45   End of day 2 

All reported times in BST 



Keynote Speakers 

 
Dr. Michael Brenner 

 
Michael is a faculty member in SEAS and Physics at Harvard University. He has 
a PhD in Physics from the University of Chicago, where he worked with 
Professor Leo Kadanoff.  His first faculty position was at MIT in the 
Mathematics Department before joining the faculty of Harvard University in 
2002. His research uses methods and ideas of applied mathematics to address 
problems in science and engineering. Current research directions range from 
figuring out the nature of the turbulent cascade, to understanding the rules 
for building materials that assemble themselves, possibly with life-like 
properties, to efforts to use recent advances in machine learning to facilitate 
scientific discovery. 

 

Invited Speakers 
 

Pietro Liò 
Pietro Liò is a Full Professor at the department of Computer Science and Technology of the 
University of Cambridge and a member of the Artificial Intelligence group. He is also a member of 
the Cambridge Centre for AI in Medicine. His research interest focuses on developing Artificial 
Intelligence and Computational Biology models to understand diseases complexity and address 
personalised and precision medicine. Current focus is on Graph Neural Network modeling. 
 

Timur Madzhidov 
Senior Product Manager in Elsevier, responsible for the development of AI-driven tools based on 
Reaxys data and improvement of Reaxys data readiness for AI and ML application. 
Chemoinformatics specialist, researcher and educator. Topic of primary interest: reaction 
informatics, AI in chemistry, algorithmic chemoinformatics, chemistry-aware machine learning. 
Before joining Elsevier, Timur was Leading Researcher and Director of Intelligent Robochemistry lab, 
Kazan Federal University, Russia, group Leader in the Lab in Chemoinformatics and Molecular 
Modeling. Before 2022, he was a member of the Reaxys R&D collaboration network supported by 
Elsevier, as well as the collaboration "Machine Design of Small Molecules by Artificial Intelligence" 
supported by Janssen Pharmaceutics. He is a founder, lecturer (as associate professor), and former 
supervisor of the Master Program in Chemoinformatics and Molecular Modeling of Kazan Federal 
University, the first master program in chemoinformatics in Russia. Since 2013 to 2022 the program 
operated as the Double-Diploma with the University of Strasbourg. 
 

Antonio Del Rio Chanona 
Antonio Del Rio Chanona is the head of the Optimisation and Machine Learning for Process Systems 
Engineering group at the Department of Chemical Engineering, and the Centre for Process Systems 
Engineering, Imperial College London. His research focuses on developing and applying computer 
algorithms from the area of optimization, machine learning and reinforcement learning to 



engineering systems. The applied branch of his research looks at bioprocess control, optimization 
and scale-up. 
 

Stefan Born 
Technische Universität Berlin, TUB · Department of Biotechnology and Department of Mathematics,  
PhD. 
 
 

Oral Talks 

 
ML-SAFT: A framework for PCP-SAFT parameter prediction  

Kobi Felton1, 2, Lukas Raßpe-Lange,2 Jan G. Rittig, 3 Kai Leonhard, 2 Alexander Mitsos, 2,4,5 
Julian Meyer-Kirschner,8 Carsten Knösche, 8 Alexei Lapkin1,6,7*  

* Corresponding author   
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7 Chemistry, University of Cambridge  
8 BASF SE, 67056 Ludwigshafen am Rhein, Germany  

  
Keywords: Thermodynamics, machine learning, PC-SAFT  

  
Abstract:  

Fast and accurate prediction of fluid-phase thermodynamics is a long-standing interest of the 
processing engineering community. Over the last fifty years, a variety of methods have been 
developed ranging from group contribution methods to quantum chemical simulations to, most 
recently, machine learning methods. However, there is still a need for methods that can extend to 
a wide range of compounds without significant tuning or introspection from the end user. Group 
contribution methods that require careful and often manual identification of functional groups on 
molecules that match a database, and existing quantum mechanical (QM) methods often require 
significant expertise and computational cost.  Machine learning methods have demonstrated 
promise in the prediction of thermodynamic parameters, yet many lack the thermodynamic 
consistency of classical thermodynamic models.  Recently, it has been shown that that using a 
machine learning model to predict the parameters an existing classical Equation of State (EoS) can 
overcome the challenges of thermodynamic consistency.  



  

In this work, we develop ML-SAFT, a framework for predicting PCP-SAFT parameters using machine 
learning. ML-SAFT contains several machine learning models and, most importantly, the largest 
database of PCP-SAFT parameters published in the literature (986 molecules). We extract data from 
the Dortmund Databank and develop a robust regression method to determine pure component 
PCP-SAFT parameters from experimental vapor pressure and liquid density data. We then train 
random forests, feed forward networks and message passing neural networks (MPNNs) to predict 
the regressed PCP-SAFT parameters.  
  
Our results show that random forests obtain the most accurate predictions of the regressed PCP-
SAFT parameters.  Furthermore, the best prediction of vapor pressure on unseen molecules is 
obtained from the random forest. However, the best results on density predictions were obtained 
with parameters predicted by a MPNN. We attribute this difference to the increased representation 
capability of the MPNN for polar molecules, which we found to be important for density 
predictions.     
  
Overall, our work demonstrates that machine learning is a powerful tool for PCP-SAFT parameter 
prediction. We foresee that the results shown in this work can form a baseline for future work that 
explores multicomponent mixture predictions using PCP-SAFT.  

 

 

 

 

 

 

 

 



Applying atomistic neural networks to bias conformer ensembles 
towards bioactive-like conformations 
Benoît Baillif1, Jason Cole2, Patrick McCabe2, Andreas Bender1   

  
1 Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, CB2 1EW, Cambridge, United 
Kingdom   
2 Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, United Kingdom  
 
Keywords: atomistic neural network, conformer ensemble, bioactive conformation, rigid-ligand docking, maximum 
common substructure  

  
Abstract (<400 words):   

The generation of energetically favourable conformations of small molecules is a common task in 
drug design such as during docking or pharmacophore searching. While recent conformer 
generators create bioactive-like conformations for most known ligands, there is currently no 
general method to identify them among the set of generated conformers1, and developing methods 
to prioritise conformers that could represent likely target-bound poses is therefore desirable. In 
this work we extracted 13,460 bioactive conformations of 10,481 curated ligands in the PDBbind2 
dataset and generated up to 250 conformers for each ligand. We then trained atomistic neural 
networks (AtNNs) with various levels of completeness to process 3D information of generated 
conformers to predict the atomic root-mean-square deviation to its closest bioactive conformation 
(ARMSDbio). The model was compared with bioactivity-unaware ranking baselines such as a 
random ordering of conformers or MMFF94s energy ranking, and a bioactivity-based baseline 
taking the Torsion Fingerprint Deviation to the Maximum Common Substructure to the closest 
molecule in the training set (TFD2RefMCS). On a random ligand splitting of PDBbind, ranking 
conformers by the predicted ARMSDbio from the most expressive AtNNs, ComENet3, leads to early 
enrichment of bioactive-like (ARMSDbio < 1 Å) conformations measured with a median BEDROC of 
0.29 ± 0.02, outperforming the best bioactivity-unaware MMFF94s energy ranking baseline 
showing a median BEDROC of 0.18 ± 0.02, and performing on a par with the slower bioactivity-
based TFD2RefMCS baseline showing a median BEDROC of 0.31 ± 0.02. Moreover, when restricting 
only to harder test sets to flexible molecules, the bioactivity-unaware baselines showed median 
BEDROCs close to 0.01, while AtNNs and TFD2RefMCS showed median BEDROCs up to 0.12. When 
performing rigid-ligand re-docking of PDBbind ligands with GOLD4 using the 1% top-ranked 
conformers, ComENet showed a higher successful docking rate than bioactivity-unaware baselines, 
with a rate of 0.48 ± 0.02 compared to Generation order with a rate of 0.39 ± 0.02. Hence, the 
approach presented here uses AtNNs successfully to focus conformer ensembles towards bioactive-
like conformations, representing an opportunity to reduce computational expense in virtual 
screening applications on known targets that requires input conformations.  
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Classical and Deep Learning for Drug Property Prediction and 
Uncertainty Estimation: A Comparative Study 

Cecilia Cabrera1, Andrea Dimitracopoulos*1, Jacob Green1, Ryan Greenhalgh**1, 
Maximilian Jakobs1, Mark van der Wilk1,2  

* Presenting author   
** Corresponding author   

(Authors in alphabetical order)  
1 DeepMirror  
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Keywords: Medicinal Chemistry, Drug properties prediction, Machine Learning, Deep Learning Architectures, 
Uncertainty Estimation  

  
Abstract (<400 words):   

The process of accurately predicting drug properties is a crucial step in drug development as it 
helps to de-risk laboratory testing of assets before clinical trials. Deep learning has emerged as a 
highly promising tool, augmenting the capabilities of machine learning models to predict 
absorption, distribution, metabolism, and excretion (ADME) property predictions, and thereby 
facilitating in silico screening. However, the challenge extends beyond predicting a single value for 
each of these properties. To enhance the confidence of chemists engaged in subsequent 
laboratory explorations, it is imperative for models to offer estimates of uncertainty, thereby 
shedding light on the dependability of the predictions. This approach enables chemists to strike a 
balance when examining new potential candidates for lab validation - they can appraise the trade-
off between prioritising molecules exhibiting substantial potential for improvement in one or 
more properties of interest, and the probability of these enhancements being observed in the 
laboratory. In this study, we compare common deep learning architectures for featurization, such 
as Graph Neural Networks and Large Language Models, using semi-supervised methods along 
with classical fingerprinting on a variety of ADME datasets (~50). We also assess the capacity of 
these models to estimate uncertainty using various methods including ensembles and Bayesian 
inference. Our findings shed light on circumstances under which classical approaches can 
outperform deep learning architectures in terms of predictive power and provide insights into the 
trade-offs between different architectures and methods. We further discuss the implications of 
our findings for drug discovery and development.  

 

 

 

 

 

 

 



Multi-Fidelity Data-Driven Design and Analysis of Reactor 
and Tube Simulations (DARTS)  

Tom Savage1,2, Nausheen Basha2 Jonathan McDonough3, Omar Matar2, Ehecatl Antonio 
del Rio Chanona*1,2  
* Corresponding author   

1 Sargent Centre for Process Systems Engineering, Imperial College London.  
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Keywords: Optimisation, Simulations, Multi-fidelity, Additive Manufacturing, Data-driven  

  
Abstract (<400 words):   
The development of new manufacturing techniques such as 3D printing have enabled the creation 
of previously infeasible chemical reactor designs. Systematically optimizing the highly 
parameterized geometries involved in these new classes of reactor is vital to ensure enhanced 
mixing characteristics and feasible manufacturability.   
Here we present a framework to rapidly solve this nonlinear, computationally expensive, and 
derivative-free problem, enabling the fast prototype of novel reactor parameterizations. We take 
advantage of Gaussian processes to adaptively learn a multi-fidelity model of reactor simulations 
across a number of different continuous mesh fidelities. The search space of reactor geometries is 
explored through an amalgam of different, potentially lower, fidelity simulations which are chosen 
for evaluation based on a weighted acquisition function, trading off information gain with cost of 
simulation. Figure 1 demonstrates the objective value as optimisation progresses, as well as time 
taken for each simulation.  
  

  
Figure 1: The number of equivalent tanks-in-series evaluated colored by the respective cost of 
simulation. The upper half of the figure shows these quantities against iteration and the lower half 
shows these quantities against wall-clock time, highlighting the importance of lower-cost 
simulations.  

  
Within our framework we derive a novel criterion for monitoring the progress and dictating the 
termination of multi-fidelity Bayesian optimization, ensuring a high-fidelity solution is returned 



before experimental budget is exhausted. The class of reactor we investigate are helical-tube 
reactors under pulsed-flow conditions, which have demonstrated outstanding mixing 
characteristics, have the potential to be highly parameterized, and are easily manufactured using 
3D printing. Figure 2 demonstrates the impact of the coil radius parameter on reactor mesh.  
  

  
  

Figure 2: The effect of coil radius for a helical coil tube with a fixed length.  
  
To validate our results, we 3D print and experimentally validate the optimal reactor geometry, 
confirming its mixing performance. In doing so we demonstrate our design framework to be 
extensible to a broad variety of expensive simulation-based optimization problems, supporting the 
design of the next generation of highly parameterized chemical reactors. Figure 3 demonstrates 
the final optimal reactor design, the 3D printed optimal reactor, and experimental validation of 
performance.  
  

     
  

 

  
  
 Figure 3: a) Streamlines indicating tracer concentration within the optimal reactor. b) 3D printed 
reactor geometry. c) The residence-time distribution predicted via CFD simulation of the solution 
returned from the framework, alongside 3 sets of experimental data obtained via the 3D printed 
reactor.  
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From Platform to Knowledge Graph: Distributed Self-Driving 
Laboratories 

Jiaru Bai,1 Sebastian Mosbach,1,2 Connor J. Taylor,3,4 Dogancan Karan,2  
Kok Foong Lee,5 Simon D. Rihm,1,2,6 Jethro Akroyd,1,2 Alexei A. Lapkin,1,2,4 Markus 

Kraft1,2,7,8*  
* Corresponding author: mk306@cam.ac.uk (M.K.)  

 
1 Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, 
Cambridge CB3 0AS, United Kingdom.  
2 Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower #05-05, 1 Create Way, 
Singapore 138602, Singapore.  
3 Astex Pharmaceuticals, 436 Cambridge Science Park Milton Road, Cambridge CB4 0QA, United Kingdom.  
4 Innovation Centre in Digital Molecular Technologies, Yusuf Hamied Department of Chemistry, University of 
Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.  
5 CMCL Innovations, Sheraton House, Cambridge CB3 0AX, United Kingdom.  
6 Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 
Singapore 117585, Singapore.  
7 School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 
637459, Singapore.  
8 The Alan Turing Institute, London NW1 2DB, United Kingdom.  
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Abstract (<400 words):   

The ability to integrate resources and share knowledge across organisations enables scientists to 
expedite the scientific discovery process, which is especially crucial in addressing emerging global 
challenges that require global solutions [1, 2]. In this work, we develop an architecture to enable 
distributed self-driving laboratories as part of The World Avatar project, an all-encompassing digital 
twin based on a dynamic knowledge graph. Our approach utilises ontologies to capture the data 
and material flows involved in design-make-test-analyse cycles, and employs autonomous agents 
as executable knowledge components to carry out the experimentation workflow. All data 
provenance is recorded following FAIR principles, ensuring its accessibility and interoperability. We 
demonstrate the practical application of our framework by linking two robotic setups in Cambridge 
and Singapore to achieve a collaborative closed-loop optimisation for a pharmaceutically-relevant 
aldol condensation reaction in real time. The knowledge graph evolves autonomously while 
progressing towards the research goals set by the scientist. The two robots effectively produced a 
Pareto front for the cost-yield optimisation problem over the course of two days of operation. This 
proof-of-concept demonstration highlights the potential of the framework to establish a globally 
collaborative research network and further advance scientific frontiers.  
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Machine Learning as an integral part of an automated 
experimental workflow in protein engineering   

Stefan Born¹, Mark Doerr²  

  
1 Technische Universität Berlin,  
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Keywords: FAIR data, automated experimental planning, automated machine learning, transfer learning, multitask 
learning  

  
Abstract (<400 words):  
The talk addresses some of the obstacles in the application of machine learning (ML) to protein engineering 
and relates these to requirements on software architecture and data management, which we believe to be 
valid beyond this domain.   
  
Unlike classical statistical models, machine learning can only play out its full potential when large datasets 
can be aggregated. In the quest for new proteins or enzymes the sizes of labelled datasets for a specific task, 
e.g. a specific catalytic function are typically quite small. The complexity of models that can be trained on 
such limited data is limited as well, however models can share (some) parameters across different tasks 
(multitask learning, [1]) or reuse parameters trained on other tasks, possibly large scale unsupervised 
(transfer learning, [2,3]) or be constrained by domain knowledge [4]. Many such approaches are presently 
explored by scientists who manually clean and prepare the data and assemble and train the models.   
  
After automation of experiment execution in robotic labs the automation of modelling and experimental 
planning is a logical next step. In order to achieve this the implicit domain knowledge of scientists has to be 
made explicit. Data would have to be annotated by metadata with defined semantics. Models would need 
the metadata to select their inputs and to determine permissible train-test splits. Metadata must include 
detailed information about experimental procedures, as e.g. enzymatic activity data of the same reaction 
type, but from different experiments or labs are often not directly comparable. A model on aggregated data 
from different labs would require some encoding of the conditions as an additional predictor in order to 
account for the differences.   
  
Following these lines, we discuss some modelling examples with respect to the relation of FAIR data and 
software for automated model building, training and selection.   
  
Ultimately predictive models would be used to take good decisions in the planning of the next experiment. 
We try to get a better understanding of what this means in the light of Bayesian decision theory.  
  
At the end we give a very short overview of LARAsuite (https://gitlab.com/larasuite), which is a free and 
open source research data management system that addresses the problems of manual data insertion and 
metadata assignment by establishing radically automated processes. Data and Meta- data is mainly not 
entered by humans, but by machines.  
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Data-driven Dynamic Control Scheme for Antibody Producing 
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Abstract:   

Effective process control is a basic requirement for biopharmaceutical manufacturing to achieve 
high throughputs and enhanced quality control. High non-linearity and uncertainties associated 
with bioprocesses challenge the ability of traditional controllers to deliver satisfactory 
performance, thereby creating an urgent need for advanced model based control strategies for 
efficient bioprocess control. Process Analytical Technology (PAT) initiative has highlighted the 
importance of identifying critical process parameters (CPP) of a bioprocess that influence critical 
quality attributes (CQA), to achieve seamless integration of analytical data with real-time 
monitoring and control for enhanced process understanding and to overcome manufacturing 
challenges.   
Multivariate monitoring techniques in biopharmaceuticals has resulted in the generation of large 
amounts of data comprising real-time measurements of critical quality and performance attributes, 
and if exploited efficiently can provide opportunity for developing superior control action. This 
study explores the different stages of development of a novel data-driven dynamic control scheme 
for bioprocesses in the context of antibody producing CHO cell cultures in fed-batch bioreactors. In 
order to harness the full potential of machine learning models for bioprocess control, we reinforced 
them with concepts from network theory and control theory. The models generated could predict 
the expected trajectory of a cell culture based on process knowledge from historic bioprocess data 
and propose a customized reactive control action when encountered with a deviation from the 
expected trajectory. The proposed closed-loop model-based multi-attribute control scheme, that 
combines concepts from data science, network theory and control theory, was capable of 
recommending sensible control actions, which ensure that the cultures remain on a pre-defined 
well established trajectory thereby minimising variability.  
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Abstract (<400 words): 

Synthetic chemistry has many open challenges: how reaction yields change as reactants and 
conditions change, [1] how molecules interact with the human body, [2] or the full underlying 
mechanisms of some workhorse reactions. [3] Machine learning (ML) has seen enormous strides 
in modeling the world's "black boxes": from image processing and recognition that rival human 
ability, [4] consistently beating human players in a variety of games, [5] to the amusing ruminations 
of the latest large language models. [6] Due to the low standardization of data, few large 
chemistry-focused datasets, and the mere fact that molecules are difficult systems to model, ML 
has historically struggled to make headway in the chemical sciences. [7] Recent developments in 
ML models and increased access to open-source chemistry datasets have opened the door to 
practical ML models, including DFT and molecular property predictions, activity predictions, and 
novel scaffold generation. Herein, we present two case studies utilizing recent and classic ML 
methods to further our predictive ability in and understanding of synthetic chemistry. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1: (A) Graphical outline of ML predictions of Minisci and P450 LSF 
regiochemical outcomes. (B) Overview of HiTEA. 

First, we investigated ML 
applied to chemical 
transformations aimed at 
structural diversification of 
drug-like molecules, late stage 
functionalizations (LSFs). 
These types of reactions are a 
key component of drug 
discovery, capable of rapidly 
exploring the chemical space 
to yield pharmacokinetically 
ideal compounds. [8] 
However, predicting the 
regiochemical outcomes of 
LSFs is still an open challenge 
in the field. Notably, 
experimental data curation is 
labor-intensive and time 
consuming. We report the 
development of an approach 
that combines a 

message passing neural network and 13C NMR-based transfer learning to predict the atom-wise 
probabilities of functionalization. [9] We validated our model retrospectively and with a series of 
prospective experiments, showing that it accurately predicts the outcomes of Minisci-type and 
P450 transformations, outperforming state-of-the-art Fukui-based reactivity indices and other 



graph-based ML models (Figure 1A). [10] 
 

The second case study developed a dataset-ambivalent ML framework to analyze high- 
throughput experimentation (HTE) datasets. HTE has the potential to improve our understanding 
of organic chemistry by systematically interrogating reactivity across diverse chemical spaces. 
One notable bottleneck is the lack of facile analyzers which can interpret of these data's hidden 
chemical insights. [11] Herein we report the development of a High Throughput Experimentation 
Analyzer (HiTEA), a robust and statistically rigorous framework which is applicable to any HTE 
dataset regardless of size, scope, or target reaction outcome. [12] HiTEA is validated on 
previously proprietary medicinal chemistry data, elucidating hidden biases and relationships 
between reaction components (Figure 1B). 
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Abstract:  

With the growing amount of chemical data stored digitally, it has become crucial to represent 
chemical compounds accurately and consistently. Harmonized representations facilitate the 
extraction of insightful information from datasets, and are advantageous for machine learning 
applications. To achieve consistent representations throughout datasets, one relies on molecule 
standardization, which is typically accomplished using rule-based algorithms that modify 
descriptions of functional groups. Here, we present the first deep-learning model for molecular 
standardization. We enable custom standardization schemes based solely on data, which, as 
additional benefit, support standardization options that are difficult to encode into rules. Our 
model achieves over 98% accuracy in learning two popular rule-based standardization protocols. 
We then follow a transfer learning approach to standardize metal-organic compounds (for which 
there is currently no automated standardization practice), based on a human-curated dataset of 
1512 compounds. This model predicts the expected standardized molecular format with a test 
accuracy of 75.6%. As standardization can be considered, more broadly, a transformation from 
undesired to desired representations of compounds, the same data-driven architecture can be 
applied to other tasks. For instance, we demonstrate the application to compound canonicalization 
and to the determination of major tautomers in solution, based on computed and experimental 
data.   
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Abstract (<400 words): 

One of the main aims of enzymatic biocatalysis is to replace conventional chemical 
synthesis by offering more sustainable catalytic alternatives (solvent, temperature, etc.) for 
key stages in the processes. For this, it is essential to find the most efficient enzyme for the 
given set of conditions, and since the molecules synthesized rarely have optimized natural 
biosynthesis pathways, it is crucial to be able to seek new enzymes with improved activity 
and selectivity. Historically, there have been two opposing approaches: enzyme 
engineering or biodiversity exploration. Although they have proved effective to date, both 
are a posteriori method, since it is still impossible to predict an enzyme's activity from its 
peptide sequence alone. That said, the rapid emergence of machine learning (ML) in this 
field, such as the Alphafold "revolution" [1], is changing this paradigm, and several studies 
are beginning to move towards this goal [2–7]. The main limitation that seems to remain is 
the availability of robust and curated experimental datasets describing enzyme activity for 
a given family, with most studies relying heavily on the often highly heterogeneous data 
available in international databases. That's why in the present study we were interested in 
exploiting our recent dataset around the transaminase family [8,9]. This dataset, comprising 
more than 25,000 activity assays performed under the same experimental conditions, on 
more than twenty different substrates, was generated a few years ago using a new high- 
throughput screening strategy to identify new transaminases suitable for synthesis. To 
achieve our objective, we began by attempting to correlate enzyme sequences with their 
activity for different substrates using neural networks. Some of the tested architectures 
proved effective in solving this problem once transformed into a classification problem, by 
grouping activities into 4 major classes. However, the high proportion of weak enzyme 
activities in the dataset seemed to limit the prediction accuracy for a regression-type 
approach. With this in mind, we decided to introduce more information at enzyme level, to 
establish finer correlations between their active site, substrates and activities. For this, and 
inspired by some recent studies using docking [2] and GNN [5,10], we started designing a 
new workflow which will be detailed in this talk and that is based on several ML-based 
available tools (Colabfold, P2Rank, Gnina, BagPype). It aims at 1) predicting the structure of 
our enzymes, 2) at docking the different substrates and co-factors inside the latter, and 3) 
at transforming the resulting 3D file into a network visualization that could be used as 
additional input to our neural networks. 

mailto:egon.heuson@centralelille.fr
https://github.com/sokrypton/ColabFold
https://rdk.github.io/p2rank/
https://github.com/gnina/gnina
https://github.com/FlorianSong/BagPype
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